Fault localization using itemset mining under constraints

Mehdi Maamar 1 Nadjib Lazaar 2 Samir Loudni 3 Yahia Lebbah 1
2 COCONUT - Agents, Apprentissage, Contraintes
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
3 Equipe CODAG - Laboratoire GREYC - UMR6072
GREYC - Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen
Abstract : We introduce in this paper an itemset mining approach to tackle the fault localization problem, which is one of the most difficult processes in software debug- ging. We formalize the problem of fault localization as finding the k best patterns satisfying a set of constraints modelling the most suspicious statements. We use a Constraint Programming (CP) approach to model and to solve our itemset based fault localization problem. Our approach consists of two steps: (i) mining top-k suspicious suites of statements; (ii) fault localization by processing top-k patterns. Experiments performed on standard benchmark programs show that our approach enables to pro- pose a more precise localization than a standard approach
Type de document :
Article dans une revue
Automated Software Engineering, Springer Verlag, 2016, 〈10.1007/s10515-015-0189-z〉
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01276633
Contributeur : Joël Quinqueton <>
Soumis le : vendredi 19 février 2016 - 16:41:54
Dernière modification le : mardi 5 juin 2018 - 10:14:41

Identifiants

Citation

Mehdi Maamar, Nadjib Lazaar, Samir Loudni, Yahia Lebbah. Fault localization using itemset mining under constraints. Automated Software Engineering, Springer Verlag, 2016, 〈10.1007/s10515-015-0189-z〉. 〈lirmm-01276633〉

Partager

Métriques

Consultations de la notice

250