Key Discovery for Numerical Data: Application to Oenological Practices

Abstract : The key discovery problem has been recently investigated for symbolical RDF data and tested on large datasets such as DBpedia and YAGO. The advantage of such methods is that they allow the automatic extraction of combinations of properties that uniquely identify every resource in a dataset (i.e., ontological rules). However, none of the existing approaches is able to treat real world numerical data. In this paper we propose a novel approach that allows to handle numerical RDF datasets for key discovery. We test the significance of our approach on the context of an oenological application and consider a wine dataset that represents the different chemical based flavourings. Discovering keys in this context contributes in the investigation of complementary flavors that allow to distinguish various wine sorts amongst themselves.
Type de document :
Communication dans un congrès
ICCS: International Conference on Conceptual Structures, Jul 2016, Annecy, France. 22nd International Conferences on Conceptual Structures, 2016, 〈https://www.irit.fr/ICCS2016/〉
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01328676
Contributeur : Madalina Croitoru <>
Soumis le : mercredi 8 juin 2016 - 12:10:39
Dernière modification le : jeudi 24 mai 2018 - 15:59:22

Identifiants

  • HAL Id : lirmm-01328676, version 1

Citation

Danai Symeonidou, Madalina Croitoru, Isabelle Sanchez, Pascal Neveu, Nathalie Pernelle, et al.. Key Discovery for Numerical Data: Application to Oenological Practices. ICCS: International Conference on Conceptual Structures, Jul 2016, Annecy, France. 22nd International Conferences on Conceptual Structures, 2016, 〈https://www.irit.fr/ICCS2016/〉. 〈lirmm-01328676〉

Partager

Métriques

Consultations de la notice

317