Another remark on the radical of an ODD perfect number

Pascal Ochem 1 Michaël Rao 2
1 ALGCO - Algorithmes, Graphes et Combinatoire
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
2 MC2 - Modèles de calcul, Complexité, Combinatoire
LIP - Laboratoire de l'Informatique du Parallélisme
Abstract : Ellia recently proved that if N is an odd perfect number such that rad(N) > √N, then its special prime p satisfies p > 148207 if 3 # N and p > 223 otherwise. He also suggested that these bounds can be improved with some computation. We obtain that if N is an odd perfect number such that rad(N) > √N, then p > 10 60.
Document type :
Journal articles
Complete list of metadatas

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01349855
Contributor : Isabelle Gouat <>
Submitted on : Friday, July 29, 2016 - 7:51:25 AM
Last modification on : Thursday, February 7, 2019 - 3:27:21 PM

Identifiers

  • HAL Id : lirmm-01349855, version 1

Citation

Pascal Ochem, Michaël Rao. Another remark on the radical of an ODD perfect number. The Fibonacci Quarterly, Dalhousie University, 2014, 52 (3). ⟨lirmm-01349855⟩

Share

Metrics

Record views

173