Exploiting Social and Mobility Patterns for Friendship Prediction in Location-Based Social Networks

Abstract : Link prediction is a " hot topic " in network analysis and has been largely used for friendship recommendation in social networks. With the increased use of location-based services, it is possible to improve the accuracy of link prediction methods by using the mobility of users. The majority of the link prediction methods focus on the importance of location for their visitors, disregarding the strength of relationships existing between these visitors. We, therefore, propose three new methods for friendship prediction by combining, efficiently, social and mobility patterns of users in location-based social networks (LBSNs). Experiments conducted on real-world datasets demonstrate that our proposals achieve a competitive performance with methods from the literature and, in most of the cases, outperform them. Moreover, our proposals use less computational resources by reducing considerably the number of irrelevant predictions, making the link prediction task more efficient and applicable for real world applications.
Type de document :
Communication dans un congrès
ICPR: International Conference on Pattern Recognition, Dec 2016, Cancun, Mexico. 23rd International Conference on Pattern Recognition, 2016, 〈http://www.icpr2016.org/〉
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01362397
Contributeur : Pascal Poncelet <>
Soumis le : jeudi 8 septembre 2016 - 16:48:04
Dernière modification le : jeudi 11 janvier 2018 - 06:27:21
Document(s) archivé(s) le : vendredi 9 décembre 2016 - 13:30:47

Fichier

lbsn-jvalverr-icpr2016.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : lirmm-01362397, version 1

Citation

Jorge Valverde-Rebaza, Mathieu Roche, Pascal Poncelet, Alneu De, Andrade Lopes. Exploiting Social and Mobility Patterns for Friendship Prediction in Location-Based Social Networks. ICPR: International Conference on Pattern Recognition, Dec 2016, Cancun, Mexico. 23rd International Conference on Pattern Recognition, 2016, 〈http://www.icpr2016.org/〉. 〈lirmm-01362397〉

Partager

Métriques

Consultations de la notice

327

Téléchargements de fichiers

188