Multiple Constraint Aquisition

Robin Arcangioli 1 Christian Bessière 1 Nadjib Lazaar 1
1 COCONUT - Agents, Apprentissage, Contraintes
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : QUACQ is a constraint acquisition system that as- sists a non-expert user to model her problem as a constraint network by classifying (partial) exam- ples as positive or negative. For each negative ex- ample, QUACQ focuses onto a constraint of the tar- get network. The drawback is that the user may need to answer a great number of such examples to learn all the constraints. In this paper, we provide a new approach that is able to learn a maximum num- ber of constraints violated by a given negative ex- ample. Finally we give an experimental evaluation that shows that our approach improves on QUACQ.
Type de document :
Communication dans un congrès
IJCAI: International Joint Conference on Artificial Intelligence, Jul 2016, New York City, United States. 25th International Joint Conference on Artificial Intelligence, pp.698-704, 2016, 〈http://ijcai-16.org/〉
Liste complète des métadonnées

Littérature citée [5 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01374712
Contributeur : Joël Quinqueton <>
Soumis le : vendredi 30 septembre 2016 - 21:20:35
Dernière modification le : jeudi 11 janvier 2018 - 06:26:23
Document(s) archivé(s) le : samedi 31 décembre 2016 - 16:34:00

Fichier

ijcai16-multiple.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : lirmm-01374712, version 1

Collections

Citation

Robin Arcangioli, Christian Bessière, Nadjib Lazaar. Multiple Constraint Aquisition. IJCAI: International Joint Conference on Artificial Intelligence, Jul 2016, New York City, United States. 25th International Joint Conference on Artificial Intelligence, pp.698-704, 2016, 〈http://ijcai-16.org/〉. 〈lirmm-01374712〉

Partager

Métriques

Consultations de la notice

28

Téléchargements de fichiers

88