Knowledge Discovery from Texts on Agriculture Domain - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Conference Papers Year : 2016

Knowledge Discovery from Texts on Agriculture Domain

Abstract

Large amounts of textual data related to the agriculture domain are now available. Knowledge discovery becomes a crucial issue for research organizations, decision makers, and users. Our work investigates the use of \emph{Text Mining} methodologies in order to tackle several issues such as Animal Disease Surveillance, Open Data in Agriculture Domain, Information Extraction from Experimental Data. In this context, we have defined a new Knowledge Discovery from Texts (KDT) process applied to the agriculture domain (http://textmining.biz/agroNLP.html). This one is divided into four steps: (i) data acquisition, (ii) information retrieval, (iii) information extraction and disambiguation, (iv) visualization and evaluation. In this KDT process applied to specific use-cases, the integration of expert knowledge has a key role.
Fichier principal
Vignette du fichier
MISC16_v4.pdf (9.27 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

lirmm-01382012 , version 1 (15-10-2016)

Identifiers

  • HAL Id : lirmm-01382012 , version 1

Cite

Mathieu Roche. Knowledge Discovery from Texts on Agriculture Domain. MISC: Modelling and Implementation of Complex Systems, May 2016, Constantine, Algeria. ⟨lirmm-01382012⟩
272 View
170 Download

Share

More