Mining Maximally Informative k-Itemsets in Massively Distributed Environments - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier Access content directly
Conference Papers Year : 2016

Mining Maximally Informative k-Itemsets in Massively Distributed Environments

Saber Salah
  • Function : Author
  • PersonId : 967928
Reza Akbarinia
Florent Masseglia

Abstract

The discovery of informative itemsets is a fundamental building block in data analytics and information retrieval. While the problem has been widely studied, only few solutions scale. This is particularly the case when i) the data set is massive, calling for large-scale distribution, and/or ii) the length k of the informative itemset to be discovered is high. In this paper, we address the problem of parallel mining of maximally informative k-itemsets (miki) based on joint entropy. We propose PHIKS (Parallel Highly Informative K-ItemSet) a highly scalable, parallel miki mining algorithm. PHIKS renders the mining process of large scale databases (up to terabytes of data) succinct and effective. Its mining process is made up of only two efficient parallel jobs. With PHIKS, we provide a set of significant optimizations for calculating the joint entropies of miki having different sizes, which drastically reduces the execution time of the mining process. PHIKS has been extensively evaluated using massive real-world data sets. Our experimental results confirm the effectiveness of our proposal by the significant scale-up obtained with high itemsets length and over very large databases. La découverte d'itemsets informatifs est un élément fondamen-tal dans l'analyse de donnés et la recherche d'information. Bien que le problème a été largement étudié, il y a peu de solutions qui passent à l'échelle. Ceci est particulièrement le cas lorsque i) les données sont de très grane taille, ce qui demande une distribution à grande échelle, et / ou ii) la longueur k des itemsets informatifs à découvrir est élevée. Dans cet article, nous abordons le problème de la fouille des k iems les plus informatifs (appelé miki) qui est calculé en considérant l'entropie conjointe des items.
Fichier principal
Vignette du fichier
bda_short_paper.pdf (60.17 Ko) Télécharger le fichier
bda_salah_short.pdf (60.17 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Loading...

Dates and versions

lirmm-01411190 , version 1 (07-12-2016)

Licence

Attribution - NonCommercial - NoDerivatives

Identifiers

  • HAL Id : lirmm-01411190 , version 1

Cite

Saber Salah, Reza Akbarinia, Florent Masseglia. Mining Maximally Informative k-Itemsets in Massively Distributed Environments. BDA: Gestion de Données — Principes, Technologies et Applications, Nov 2016, Poitiers, France. ⟨lirmm-01411190⟩
224 View
411 Download

Share

Gmail Facebook X LinkedIn More