Aperiodic tilings and entropy
Abstract
In this paper, we present a construction of Kari–Culik aperiodic tileset. Our construction is self-contained and organized to allow reasoning on properties of the resulting sets of tilings. We prove that this tileset does not have any “unexpected behavior”, i.e., each line of each tiling has an average. Then we prove that this tileset has positive entropy, and that entropy is still positive when one adds some specific restrictions on the tilings. This shows that it is not self-similar, contrarily to all preceding aperiodic tilesets.