Excluding Graphs as Immersions in Surface Embedded Graphs

Abstract : We prove a structural characterization of graphs that forbid a fixed graph H as an immersion and can be embedded in a surface of Euler genus γ. In particular, we prove that a graph G that excludes some connected graph H as an immersion and is embedded in a surface of Euler genus γ has either “small” treewidth (bounded by a function of H and γ) or “small” edge connectivity (bounded by the maximum degree of H). Using the same techniques we also prove an excluded grid theorem on bounded genus graphs for the immersion relation.
Type de document :
Communication dans un congrès
Graph-Theoretic Concepts in Computer Science - WG, Jun 2013, Lübeck, Germany. 39th International Workshop, WG 2013, Revised Papers, LNCS (8165), pp.274-285, 2013, Graph-Theoretic Concepts in Computer Science. 〈10.1007/978-3-642-45043-3_24〉
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01483644
Contributeur : Dimitrios M. Thilikos <>
Soumis le : lundi 6 mars 2017 - 11:35:21
Dernière modification le : jeudi 11 janvier 2018 - 06:26:13

Identifiants

Collections

Citation

Archontia C. Giannopoulou, Marcin Kamiński, Dimitrios M. Thilikos. Excluding Graphs as Immersions in Surface Embedded Graphs. Graph-Theoretic Concepts in Computer Science - WG, Jun 2013, Lübeck, Germany. 39th International Workshop, WG 2013, Revised Papers, LNCS (8165), pp.274-285, 2013, Graph-Theoretic Concepts in Computer Science. 〈10.1007/978-3-642-45043-3_24〉. 〈lirmm-01483644〉

Partager

Métriques

Consultations de la notice

32