Generic algorithms for halting problem and optimal machines revisited - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Article Dans Une Revue Logical Methods in Computer Science Année : 2016

Generic algorithms for halting problem and optimal machines revisited

Résumé

The halting problem is undecidable — but can it be solved for “most” inputs? This natural question was considered in a number of papers, in different settings. We revisit their results and show that most of them can be easily proven in a natural framework of optimal machines (considered in algorithmic information theory) using the notion of Kolmogorov complexity. We also consider some related questions about this framework and about asymptotic properties of the halting problem. In particular, we show that the fraction of terminating programs cannot have a limit, and all limit points are Martin-L¨of random reals. We then consider mass problems of finding an approximate solution of halting problem and probabilistic algorithms for them, proving both positive and negative results. We consider the fraction of terminating programs that require a long time for termination, and describe this fraction using the busy beaver function. We also consider approximate versions of separation problems, and revisit Schnorr’s results about optimal numberings showing how they can be generalized.
Fichier principal
Vignette du fichier
1505.00731.pdf (468.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

lirmm-01486494 , version 1 (14-06-2022)

Licence

Identifiants

Citer

Laurent Bienvenu, Damien Desfontaines, Alexander Shen. Generic algorithms for halting problem and optimal machines revisited. Logical Methods in Computer Science, 2016, Logical Methods in Computer Science, 12 (2), pp.1-29. ⟨10.2168/LMCS-12(2:1)2016⟩. ⟨lirmm-01486494⟩
223 Consultations
31 Téléchargements

Altmetric

Partager

More