Conference Poster Year : 2017

Visualizing Hierarchical Time Series with a Focus+Context Approach

Visualización de Series Temporales Jerárquicas usando un enfoque Focus+Context

Visualisation de Séries Temporelles Hiérarchiques avec une approche Focus+Context

Abstract

Multiple time series are present in many domains such as medicine, finance, and manufacturing for analytical purposes. When dealing with several time series scalability problem overcome. To solve this problem, multiple time series can be organized into a hierarchical structure. In this work, we introduce a Streamgraph-based approach to convey this hierarchical structure. Based on a focus+context technique, our visualization allows time series exploration at different granularities (e. g., from overview to details). A demo is available at http://advanse.lirmm.fr/hierarchical/.
Fichier principal
Vignette du fichier
template.pdf (435.64 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

lirmm-01592614 , version 1 (25-09-2017)

Identifiers

  • HAL Id : lirmm-01592614 , version 1

Cite

Erick Cuenca Pauta, Arnaud Sallaberry, Florence y Wang, Pascal Poncelet. Visualizing Hierarchical Time Series with a Focus+Context Approach. INFOVIS@VIS, Oct 2017, Phoenix, United States. , Conference on Scientific Visualization, Information Visualization and Visual Analytics, 2017. ⟨lirmm-01592614⟩
278 View
196 Download

Share

More