Communication Dans Un Congrès Année : 2018

FReeP: towards parameter recommendation in scientific workflows using preference learning

Résumé

Scientific workflows are a de facto standard for modeling scientific experiments. However, several workflows have too many parameters to be manually configured. Poor choices of parameter values may lead to unsuccessful executions of the workflow. In this paper, we present F ReeP , a parameter recommendation algorithm that suggests a value to a parameter that agrees with the user preferences. F ReeP is based on the Preference Learning technique. A preliminary experimental evaluation performed over the SciPhy workflow showed the feasibility of F ReeP to recommend parameter values for scientific workflows.
Fichier principal
Vignette du fichier
211-sbbd_2018-sp.pdf (152.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

lirmm-01868574 , version 1 (05-09-2018)

Identifiants

  • HAL Id : lirmm-01868574 , version 1

Citer

Daniel Silva, Aline Paes, Esther Pacitti, Daniel de Oliveira. FReeP: towards parameter recommendation in scientific workflows using preference learning. 33rd Brazilian Symposium on Databases (SBBD 2018), Aug 2018, Rio de Janeiro, Brazil. pp.211-216. ⟨lirmm-01868574⟩
294 Consultations
139 Téléchargements

Partager

More