FReeP: towards parameter recommendation in scientific workflows using preference learning - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Conference Papers Year : 2018

FReeP: towards parameter recommendation in scientific workflows using preference learning

Abstract

Scientific workflows are a de facto standard for modeling scientific experiments. However, several workflows have too many parameters to be manually configured. Poor choices of parameter values may lead to unsuccessful executions of the workflow. In this paper, we present F ReeP , a parameter recommendation algorithm that suggests a value to a parameter that agrees with the user preferences. F ReeP is based on the Preference Learning technique. A preliminary experimental evaluation performed over the SciPhy workflow showed the feasibility of F ReeP to recommend parameter values for scientific workflows.
Fichier principal
Vignette du fichier
211-sbbd_2018-sp.pdf (152.88 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

lirmm-01868574 , version 1 (05-09-2018)

Identifiers

  • HAL Id : lirmm-01868574 , version 1

Cite

Daniel Silva, Aline Paes, Esther Pacitti, Daniel de Oliveira. FReeP: towards parameter recommendation in scientific workflows using preference learning. 33rd Brazilian Symposium on Databases (SBBD 2018), Aug 2018, Rio de Janeiro, Brazil. pp.211-216. ⟨lirmm-01868574⟩
280 View
120 Download

Share

More