Dushnik-Miller dimension of TD-Delaunay complexes

Daniel Gonçalves 1 Lucas Isenmann 1
1 ALGCO - Algorithmes, Graphes et Combinatoire
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : TD-Delaunay graphs, where TD stands for triangular distance, is a variation of the classical Delaunay triangulations obtained from a specific convex distance function. Bonichon et. al. noticed that every triangulation is the TD-Delaunay graph of a set of points in $\mathbb{R}^2$, and conversely every TD-Delaunay graph is planar. It seems natural to study the generalization of this property in higher dimensions. Such a generalization is obtained by defining an analogue of the triangular distance for $\mathbb{R}^d$. It is easy to see that TD-Delaunay complexes of $\mathbb{R}^{d-1}$ are of Dushnik-Miller dimension $d$. The converse holds for $d=2$ or $3$ and it was conjectured independently by Mary and Evans et. al. to hold for larger $d$. Here we disprove the conjecture already for $d = 4$.
Type de document :
Communication dans un congrès
EuroCG: European Workshop on Computational Geometry, Apr 2017, Malmo, Sweden. 33rd European Workshop on Computational Geometry, 2017
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01888045
Contributeur : Daniel Gonçalves <>
Soumis le : vendredi 8 mars 2019 - 09:19:54
Dernière modification le : lundi 11 mars 2019 - 10:21:32

Fichier

1803.09576.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : lirmm-01888045, version 1
  • ARXIV : 1803.09576

Collections

Citation

Daniel Gonçalves, Lucas Isenmann. Dushnik-Miller dimension of TD-Delaunay complexes. EuroCG: European Workshop on Computational Geometry, Apr 2017, Malmo, Sweden. 33rd European Workshop on Computational Geometry, 2017. 〈lirmm-01888045〉

Partager

Métriques

Consultations de la notice

33

Téléchargements de fichiers

1