Alternative proofs of the asymmetric Lovász local lemma and Shearer's lemma - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Conference Papers Year : 2018

Alternative proofs of the asymmetric Lovász local lemma and Shearer's lemma

Abstract

We provide new algorithmic proofs for two forms of the Lovász Local Lemma: the Asymmetric version and Shearer's Lemma. Our proofs directly compute an upper bound for the probability that the corresponding Moser-type algorithms last for at least n steps. These algorithms iteratively sample the probability space; when and if they halt, a correct sampling, i.e. one where all undesirable events are avoided, is obtained. Our computation shows that this probability is exponentially small in n. In contrast most extant proofs for the Lovász Local Lemma and its variants use counting arguments that give estimates of only the expectation that the algorithm lasts for at least n steps. For the asymmetric version, we use the results of Bender and Richmond on the multivariable Lagrange inversion. For Shearer's Lemma, we follow the work of Kolipaka and Szegedy, combined with Gelfand's formula for the spectral radius of a matrix.
Fichier principal
Vignette du fichier
paper15.pdf (477.44 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

lirmm-01890510 , version 1 (08-10-2018)

Identifiers

  • HAL Id : lirmm-01890510 , version 1

Cite

Ioannis Giotis, Lefteris Kirousis, John Livieratos, Kostas I Psaromiligkos, Dimitrios M. Thilikos. Alternative proofs of the asymmetric Lovász local lemma and Shearer's lemma. International Conference on Random and Exhaustive Generation of Combinatorial Structures (GASCom), Jun 2018, Athens, Greece. pp.148-155. ⟨lirmm-01890510⟩
176 View
131 Download

Share

More