Finite LTL Synthesis with Environment Assumptions and Quality Measures - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Communication Dans Un Congrès Année : 2018

Finite LTL Synthesis with Environment Assumptions and Quality Measures

Résumé

In this paper, we investigate the problem of synthesizing strategies for linear temporal logic (LTL) specifications that are interpreted over finite traces - a problem that is central to the automated construction of controllers, robot programs, and business processes. We study a natural variant of the finite LTL synthesis problem in which strategy guarantees are predicated on specified environment behavior. We further explore a quantitative extension of LTL that supports specification of quality measures, utilizing it to synthesize high-quality strategies. We propose new notions of optimality and associated algorithms that yield strategies that best satisfy specified quality measures. Our algorithms utilize an automata-game approach, positioning them well for future implementation via existing state-of-the-art techniques.
Fichier principal
Vignette du fichier
CamBieMci-KR18-long.pdf (408.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

lirmm-01892548 , version 1 (10-10-2018)

Identifiants

Citer

Alberto Camacho, Meghyn Bienvenu, Sheila Mcilraith. Finite LTL Synthesis with Environment Assumptions and Quality Measures. KR 2018 - 16th International Conference on Principles of Knowledge Representation and Reasoning, Oct 2018, Tempe, United States. pp.454-463. ⟨lirmm-01892548⟩
209 Consultations
56 Téléchargements

Altmetric

Partager

More