United we stand: Using multiple strategies for topic labeling - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier Access content directly
Conference Papers Year : 2018

United we stand: Using multiple strategies for topic labeling

Abstract

Topic labeling aims at providing a sound, possibly multi-words, label that depicts a topic drawn from a topic model. This is of the utmost practical interest in order to quickly grasp a topic informa-tional content-the usual ranked list of words that maximizes a topic presents limitations for this task. In this paper, we introduce three new unsupervised n-gram topic labelers that achieve comparable results than the existing unsupervised topic labelers but following different assumptions. We demonstrate that combining topic labelers-even only two-makes it possible to target a 64% improvement with respect to single topic labeler approaches and therefore opens research in that direction. Finally, we introduce a fourth topic labeler that extracts representative sentences, using Dirichlet smoothing to add contextual information. This sentence-based labeler provides strong surrogate candidates when n-gram topic labelers fall short on providing relevant labels, leading up to 94% topic covering.
Fichier principal
Vignette du fichier
NLDB_Julien.pdf (456.13 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

lirmm-01910614 , version 1 (01-11-2018)

Identifiers

Cite

Antoine Gourru, Julien Velcin, Mathieu Roche, Christophe Gravier, Pascal Poncelet. United we stand: Using multiple strategies for topic labeling. NLDB: Natural Language Processing and Information Systems, Jun 2018, Paris, France. pp.352-363, ⟨10.1007/978-3-319-91947-8_37⟩. ⟨lirmm-01910614⟩
221 View
469 Download

Altmetric

Share

Gmail Facebook X LinkedIn More