United we stand: Using multiple strategies for topic labeling

Abstract : Topic labeling aims at providing a sound, possibly multi-words, label that depicts a topic drawn from a topic model. This is of the utmost practical interest in order to quickly grasp a topic informa-tional content-the usual ranked list of words that maximizes a topic presents limitations for this task. In this paper, we introduce three new unsupervised n-gram topic labelers that achieve comparable results than the existing unsupervised topic labelers but following different assumptions. We demonstrate that combining topic labelers-even only two-makes it possible to target a 64% improvement with respect to single topic labeler approaches and therefore opens research in that direction. Finally, we introduce a fourth topic labeler that extracts representative sentences, using Dirichlet smoothing to add contextual information. This sentence-based labeler provides strong surrogate candidates when n-gram topic labelers fall short on providing relevant labels, leading up to 94% topic covering.
Type de document :
Communication dans un congrès
NLDB: Natural Language Processing and Information Systems, Jun 2018, Paris, France. 23rd International Conference on Applications of Natural Language to Information Systems, LNCS (10859), pp.352-363, 2018, 〈http://nldb2018.cnam.fr〉. 〈10.1007/978-3-319-91947-8_37〉
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01910614
Contributeur : Pascal Poncelet <>
Soumis le : jeudi 1 novembre 2018 - 15:23:58
Dernière modification le : lundi 5 novembre 2018 - 01:08:29

Fichier

NLDB_Julien.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Antoine Gourru, Julien Velcin, Mathieu Roche, Christophe Gravier, Pascal Poncelet. United we stand: Using multiple strategies for topic labeling. NLDB: Natural Language Processing and Information Systems, Jun 2018, Paris, France. 23rd International Conference on Applications of Natural Language to Information Systems, LNCS (10859), pp.352-363, 2018, 〈http://nldb2018.cnam.fr〉. 〈10.1007/978-3-319-91947-8_37〉. 〈lirmm-01910614〉

Partager

Métriques

Consultations de la notice

77

Téléchargements de fichiers

25