Skip to Main content Skip to Navigation
Journal articles

On the Structure of Ammann A2 Tilings

Bruno Durand 1 Alexander Shen 1 Nikolay Vereshchagin 2
1 ESCAPE - Systèmes complexes, automates et pavages
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : We establish a structure theorem for the family of Ammann A2 tilings of the plane. Using that theorem we show that every Ammann A2 tiling is self-similar in the sense of Solomyak (Discret Comput Geom 20:265–279, 1998). By the same techniques we show that Ammann A2 tilings are not robust in the sense of Durand et al. (J Comput Syst Sci 78(3):731–764, 2012).
Complete list of metadatas

Cited literature [9 references]  Display  Hide  Download

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02095674
Contributor : Alexander Shen <>
Submitted on : Wednesday, April 10, 2019 - 4:16:56 PM
Last modification on : Thursday, March 5, 2020 - 3:32:10 PM

Identifiers

Collections

Citation

Bruno Durand, Alexander Shen, Nikolay Vereshchagin. On the Structure of Ammann A2 Tilings. Discrete and Computational Geometry, Springer Verlag, In press, ⟨10.1007/s00454-019-00074-1⟩. ⟨lirmm-02095674⟩

Share

Metrics

Record views

113

Files downloads

110