Linked Data Annotation and Fusion driven by Data Quality Evaluation

Ioanna Giannopoulou 1 Fatiha Saïs 1 Rallou Thomopoulos 2, 3
3 GRAPHIK - Graphs for Inferences on Knowledge
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : In this work, we are interested in exploring the problem of data fusion, starting from reconciled datasets whose objects are linked with semantic sameAs relations. We attempt to merge the often conflicting information of these reconciled objects in order to obtain unified representations that only contain the best quality information.
Document type :
Journal articles
Complete list of metadatas

Cited literature [8 references]  Display  Hide  Download

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02130310
Contributor : Isabelle Gouat <>
Submitted on : Wednesday, May 15, 2019 - 4:53:02 PM
Last modification on : Monday, November 18, 2019 - 3:25:59 PM

File

EGC15.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : lirmm-02130310, version 1

Citation

Ioanna Giannopoulou, Fatiha Saïs, Rallou Thomopoulos. Linked Data Annotation and Fusion driven by Data Quality Evaluation. Revue des Nouvelles Technologies de l'Information, Hermann, 2015, EGC 2015, RNTI-E-28, pp.257-262. ⟨lirmm-02130310⟩

Share

Metrics

Record views

101

Files downloads

22