Capturing Provenance for Runtime Data Analysis in Computational Science and Engineering Applications - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier Access content directly
Conference Papers Year : 2018

Capturing Provenance for Runtime Data Analysis in Computational Science and Engineering Applications

Abstract

Capturing provenance data for runtime analysis has several challenges in high performance computational science engineering applications. The main issues are avoiding significant overhead in data capture, loading and runtime query support; and coupling provenance capture mechanisms with applications built with highly efficient numerical libraries, and visualization frameworks targeted to high performance environments. This work presents DfA-prov, an approach to capture provenance data and domain data aiming at high performance applications.
Fichier principal
Vignette du fichier
s9_p1.pdf (187.9 Ko) Télécharger le fichier

Dates and versions

lirmm-03108922 , version 1 (13-01-2021)

Identifiers

Cite

Vítor Silva, Renan Souza, Jose Camata, Daniel de Oliveira, Patrick Valduriez, et al.. Capturing Provenance for Runtime Data Analysis in Computational Science and Engineering Applications. 7th International Provenance and Annotation Workshop (IPAW), Jul 2018, London, United Kingdom. pp.183-187, ⟨10.1007/978-3-319-98379-0_15⟩. ⟨lirmm-03108922⟩
42 View
154 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More