Beyond CMOS technologies for enabling integrating Artificial Intelligence at the Edge - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Conference Papers Year : 2021

Beyond CMOS technologies for enabling integrating Artificial Intelligence at the Edge

Aida Todri-Sanial
Madeleine Abernot
Corentin Delacour
Siegfried Karg
Armin Klummp
  • Function : Author
Jamila Boudadden
  • Function : Author
Tanguy Hardelin
  • Function : Author
  • PersonId : 1067417
Ahmed Nejim
Slobodan Mijalkovic
  • Function : Author
  • PersonId : 1082871

Abstract

With the increase of Artificial Intelligence (AI) in everyday life, developing AI-specific hardware based on brain-inspired computing is of utmost importance for efficient, adaptative and low-power systems. Neuro-inspired computing systems emulate the human brain's neuronal functions to efficiently solve problems that are easy to humans, such as pattern recognition. In this context, the EU H2020 NeurONN project explores a new energy-efficient computing paradigm based on phase-computing Oscillatory Neural Networks (ONN). It aims to create a neurocomputing chip that can be deployed on edge devices for AI. In this talk, a novel and alternative neuromorphic computing paradigm based on oscillating neural networks (ONN) will be presented. Energy efficient relaxation oscillators based on phase-change VO2 material for oscillating neurons and tunable 2D TMD MoS2 memristors for synapses are the building blocks of ONN architecture. Inspired by neural oscillations or brain waves, in ONN, the information is encoded in the phase of coupled oscillators. The talk will cover aspects from materials, devices, circuits to ONN architecture design and hardware implementation and demonstration on AI tasks. To demonstrate the ONN operation, we create a robotic application using two ONNs serially (ONN 1 feeds ONN 2), configured for pattern recognition to perform obstacle avoidance. We use a robot equipped in the front with eight infrared proximity sensors.
Fichier principal
Vignette du fichier
EPoSS2021-ATS (1).pdf (192.47 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

lirmm-03354108 , version 1 (24-09-2021)

Identifiers

  • HAL Id : lirmm-03354108 , version 1

Cite

Aida Todri-Sanial, Thierry Gil, Madeleine Abernot, Corentin Delacour, Stefania Carapezzi, et al.. Beyond CMOS technologies for enabling integrating Artificial Intelligence at the Edge. EPoSS Annual Forum 2021, Oct 2021, Freiburg im Breisgau, Germany. ⟨lirmm-03354108⟩
147 View
96 Download

Share

More