Negatively Correlated Noisy Learners for At-risk User Detection on Social Networks: A Study on Depression, Anorexia, Self-harm and Suicide
Résumé
Mental and physical health are strongly linked in a bidirectional relationship. Due to the stigma, ignorance, prejudice, fear, and many other reasons, there exists a large universal treatment gap for people with mental disorders. This could motivate those at-risk individuals to find their way into social networks, asking for information or emotional support. Language could provide a natural eyepiece for the study and detection of such at-risk individuals through their writings on social media platforms. In this paper, we consider the problem of detecting at-risk users with clear signs of depression, anorexia, self-harm, and suicidal thoughts. We introduce NCNL, a novel deep learning ensemble architecture that makes use of multiple noisy base learners in Negative Correlation Learning (NCL) configuration for text classification. NCNL is designed to be, backbone-independent, and we examine it with modern Transformer-based architectures. We evaluate our models on six different tasks for at-risk user detection and classification. Our models achieve significant improvements over existing state-of-the-art results reported for five out of the six tasks. Extensive experiments show how NCNL improves diversity over the classical conventional ensemble and the effect of using noisy base learners.