On Comparable Box Dimension - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier Access content directly
Conference Papers Year : 2022

On Comparable Box Dimension

Zdeněk Dvořák
  • Function : Author
  • PersonId : 1197146
Abhiruk Lahiri
  • Function : Author
  • PersonId : 1197147
Jane Tan
  • Function : Author
  • PersonId : 1197148
Torsten Ueckerdt
  • Function : Author
  • PersonId : 1000533

Abstract

Two boxes in ℝ^d are comparable if one of them is a subset of a translation of the other one. The comparable box dimension of a graph G is the minimum integer d such that G can be represented as a touching graph of comparable axis-aligned boxes in ℝ^d. We show that proper minor-closed classes have bounded comparable box dimension and explore further properties of this notion.
Fichier principal
Vignette du fichier
LIPIcs-SoCG-2022-38.pdf (645.18 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

lirmm-03872134 , version 1 (25-11-2022)

Licence

Attribution

Identifiers

Cite

Zdeněk Dvořák, Daniel Gonçalves, Abhiruk Lahiri, Jane Tan, Torsten Ueckerdt. On Comparable Box Dimension. SoCG 2022 - 38th International Symposium on Computational Geometry, Jun 2022, Berlin, Germany. pp.38:1--38:14, ⟨10.4230/LIPIcs.SoCG.2022.38⟩. ⟨lirmm-03872134⟩
3 View
9 Download

Altmetric

Share

Gmail Facebook X LinkedIn More