Online Event Detection in Streaming Time Series: Novel Metrics and Practical Insights - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier Access content directly
Conference Papers Year : 2024

Online Event Detection in Streaming Time Series: Novel Metrics and Practical Insights

Abstract

Online event detection in streaming time series is a critical task with applications across various domains. For example, the right-on-time event detection for control systems is a key for correctly addressing the issues related to the events. However, events may not be identified right after their occurrence. Depending on the monitoring solution, a time difference may exist between the event’s occurrence and detection. This problem raises research questions regarding the study of such a temporal gap. The paper introduces novel metrics (detection probability and detection lag) to address these questions. It explores the impact of configurable batches on detection performance. The experimental evaluation of diverse datasets reveals nuanced insights into the interplay between batch parameters, detection accuracy, and computational performance.
Fichier principal
Vignette du fichier
2024_01_IJCNN_PreNexus.pdf (256.67 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

lirmm-04674128 , version 1 (20-08-2024)

Identifiers

  • HAL Id : lirmm-04674128 , version 1

Cite

Janio Lima, Lucas Tavares, Esther Pacitti, João Eduardo Ferreira, Ismael Santos, et al.. Online Event Detection in Streaming Time Series: Novel Metrics and Practical Insights. IJCNN 2024 - International Joint Conference on Neural Networks, International Neural Network Society, Jun 2024, Yokoama, Japan. pp.1-8. ⟨lirmm-04674128⟩
0 View
0 Download

Share

Gmail Mastodon Facebook X LinkedIn More