Thèse Année : 2016

French Social Media Mining: Expertise and Sentiment

Fouille des Médias Sociaux Français: Expertise et Sentiment

Amine Abdaoui

Résumé

Social Media has changed the way we communicate between individuals, within organizations and communities. The availability of these social data opens new opportunities to understand and influence the user behavior. Therefore, Social Media Mining is experiencing a growing interest in various scientific and economic circles. In this thesis, we are specifically interested in the users of these networks whom we try to characterize in two ways: (i) their expertise and their reputations and (ii) the sentiments they express. Conventionally, social data is often mined according to its network structure. However, the textual content of the exchanged messages may reveal additional knowledge that can not be known through the analysis of the structure. Until recently, the majority of work done for the analysis of the textual content was proposed for English. The originality of this thesis is to develop methods and resources based on the textual content of the messages for French Social Media Mining. In the first axis, we initially suggest to predict the user expertise. For this, we used forums that recruit health experts to learn classification models that serve to identify messages posted by experts in any other health forum. We demonstrate that models learned on appropriate forums can be used effectively on other forums. Then, in a second step, we focus on the user reputation in these forums. The idea is to seek expressions of trust and distrust expressed in the textual content of the exchanged messages, to search the recipients of these messages and use this information to deduce users' reputation. We propose a new reputation measure that weighs the score of each response by the reputation of its author. Automatic and manual evaluations have demonstrated the effectiveness of the proposed approach. In the second axis, we focus on the extraction of sentiments (emotions and polarity). For this, we started by building a French lexicon of sentiments and emotions that we call FEEL (French Expanded Emotions Lexicon). This lexicon is built semi-automatically by translating and expanding its English counterpart NRC EmoLex. We then compare FEEL with existing French lexicons from literature on reference benchmarks. The results show that FEEL improves the classification of French texts according to their polarities and emotions. Finally, we propose to evaluate different features, methods and resources for the classification of sentiments in French. The conducted experiments have identified useful features and methods in the classification of sentiments for different types of texts. The learned systems have been particularly efficient on reference benchmarks. Generally, this work opens promising perspectives on various analytical tasks of Social Media Mining including: (i) combining multiple sources in mining Social Media users; (ii) multi-modal Social Media Mining using not just text but also image, videos, location, etc. and (iii) multilingual sentiment analysis.
Les médias sociaux ont changé notre manière de communiquer entre individus, au sein des organisations et des communautés. La disponibilité de ces données sociales ouvre de nouvelles opportunités pour comprendre et influencer le comportement des utilisateurs. De ce fait, la fouille des médias sociaux connait un intérêt croissant dans divers milieux scientifiques et économiques. Dans cette thèse, nous nous intéressons spécifiquement aux utilisateurs de ces réseaux et cherchons à les caractériser selon deux axes : (i) leur expertise et leur réputation et (ii) les sentiments qu’ils expriment. De manière classique, les données sociales sont souvent fouillées selon leur structure en réseau. Cependant, le contenu textuel des messages échangés peut faire émerger des connaissances complémentaires qui ne peuvent être connues via la seule analyse de la structure. Jusqu’à récemment, la majorité des travaux concernant l’analyse du contenu textuel était proposée pour l’Anglais. L’originalité de cette thèse est de développer des méthodes et des ressources basées sur le contenu pour la fouille des réseaux sociaux pour la langue Française. Dans le premier axe, nous proposons d'abord d’identifier l'expertise des utilisateurs. Pour cela, nous avons utilisé des forums qui recrutent des experts en santé pour apprendre des modèles de classification qui servent à identifier les messages postés par les experts dans n’importe quel autre forum. Nous démontrons que les modèles appris sur des forums appropriés peuvent être utilisés efficacement sur d’autres forums. Puis, dans un second temps, nous nous intéressons à la réputation des utilisateurs dans ces forums. L’idée est de rechercher les expressions de confiance et de méfiance exprimées dans les messages, de rechercher les destinataires de ces messages et d’utiliser ces informations pour en déduire la réputation des utilisateurs. Nous proposons une nouvelle mesure de réputation qui permet de pondérer le score de chaque réponse selon la réputation de son auteur. Des évaluations automatiques et manuelles ont démontré l’efficacité de l’approche. Dans le deuxième axe, nous nous sommes focalisés sur l’extraction de sentiments (polarité et émotion). Pour cela, dans un premier temps, nous avons commencé par construire un lexique de sentiments et d’émotions pour le Français que nous appelons FEEL (French Expanded Emotion Lexicon). Ce lexique est construit de manière semi-automatique en traduisant et en étendant son homologue Anglais NRC EmoLex. Nous avons ensuite comparé FEEL avec les lexiques Français de la littérature sur des benchmarks de référence. Les résultats ont montré que FEEL permet d’améliorer la classification des textes Français selon leurs polarités et émotions. Dans un deuxième temps, nous avons proposé d’évaluer de manière assez exhaustive différentes méthodes et ressources pour la classification de sentiments en Français. Les expérimentations menées ont permis de déterminer les caractéristiques utiles dans la classification de sentiments pour différents types de textes. Les systèmes appris se sont montrés particulièrement efficaces sur des benchmarks de référence. De manière générale, ces travaux ont ouvert des perspectives prometteuses sur diverses tâches d’analyse des réseaux sociaux pour la langue Française incluant: (i) combiner plusieurs sources pour transférer la connaissance sur les utilisateurs des réseaux sociaux; (ii) la fouille des réseaux sociaux en utilisant les images, les vidéos, les géolocalisations, etc. et (iii) l'analyse multilingues de sentiment.
Fichier principal
Vignette du fichier
These.pdf (3.15 Mo) Télécharger le fichier
Loading...

Dates et versions

tel-01507494 , version 1 (13-04-2017)
tel-01507494 , version 2 (25-06-2019)

Identifiants

  • HAL Id : tel-01507494 , version 1

Citer

Amine Abdaoui. French Social Media Mining: Expertise and Sentiment. Artificial Intelligence [cs.AI]. Université de Montpellier, 2016. English. ⟨NNT : 2016MONTT249⟩. ⟨tel-01507494v1⟩
1089 Consultations
2372 Téléchargements

Partager

More