Nonsingular Path Following Control of a Unicycle in the Presence of Parametric Modelling Uncertainties
Résumé
A new type of control law is derived to steer the dynamic model of a wheeled robot of unicycle type along a desired path. The methodology adopted for path following control deals explicitly with vehicle dynamics and plant parameter uncertainty. Furthermore, it overcomes stringent initial condition constraints that are present in a number of path following control strategies described in the literature. This is done by controlling explicitly the rate of progression of a ‘virtual target' to be tracked along the path, thus bypassing the problems that arise when the position of the virtual target is simply defined by the projection of the actual vehicle on that path. In the paper, a nonlinear adaptive control law is derived that yields convergence of the (closed-loop system) path following error trajectories to zero. Controller design relies on Lyapunov theory and backstepping techniques. Simulation results illustrate the performance of the control system proposed.