Color Constrained ICP for Registration of Large Unstructured 3D/color Data Sets

Abstract : In this paper, we address the problem of pair-wise registration of large unstructured 3D/color datasets. Our purpose is to improve the classical ICP (Iterative Closest Point) algorithm by using color information, in order to deal with large datasets and with objects for which the geometric information is not significant enough. After a brief presentation of classical ICP (Iterative Closest Point) algorithm and of the research works developed to improve its performance, we propose a new strategy to improve the selection of points. Color information is used to reduce the search space during the matching step. Experimental results obtained with real range images show that the algorithm provides an accurate estimation of the rigid transformation.
Type de document :
Communication dans un congrès
IEEE ICIA'06: International Conference on Information Acquisition, Aug 2006, 1, pp.249-255, 2006
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00128684
Contributeur : Sebastien Druon <>
Soumis le : vendredi 2 février 2007 - 11:24:54
Dernière modification le : jeudi 24 mai 2018 - 15:59:24
Document(s) archivé(s) le : mardi 6 avril 2010 - 23:04:49

Identifiants

  • HAL Id : lirmm-00128684, version 1

Collections

Citation

Sébastien Druon, Marie-José Aldon, André Crosnier. Color Constrained ICP for Registration of Large Unstructured 3D/color Data Sets. IEEE ICIA'06: International Conference on Information Acquisition, Aug 2006, 1, pp.249-255, 2006. 〈lirmm-00128684〉

Partager

Métriques

Consultations de la notice

236

Téléchargements de fichiers

945