Summarizing Data Cubes Using Blocks

Abstract : In the context of multidimensional data, OLAP tools are appropri- ate for the navigation in the data, aiming at discovering pertinent and abstract knowledge. However, due to the size of the data set, a system- atic and exhaustive exploration is not feasible. Therefore, the problem is to design automatic tools to ease the navigation in the data and their visualization. In this paper, we present a novel approach allow- ing to build automatically blocks of similar values in a given data cube that are meant to summarize the content of the cube. Our method is based on a levelwise algorithm (a la Apriori) whose complexity is shown to be polynomial in the number of scans of the data cube. The experiments reported in the paper show that our approach is scalable, in particular in the case where the measure values present in the data cube are discretized using crisp or fuzzy partitions.
Type de document :
Chapitre d'ouvrage
F. Masseglia, P. Poncelet, M. Teisseire. Data Mining Patterns: New Methods and Applications, IDEA Group Inc., pp.36, 2007
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00130718
Contributeur : Anne Laurent <>
Soumis le : mardi 13 février 2007 - 15:20:44
Dernière modification le : mercredi 11 avril 2018 - 15:10:05
Document(s) archivé(s) le : samedi 14 mai 2011 - 02:13:09

Identifiants

  • HAL Id : lirmm-00130718, version 1

Citation

Yeow Wei Choong, Anne Laurent, Dominique Laurent. Summarizing Data Cubes Using Blocks. F. Masseglia, P. Poncelet, M. Teisseire. Data Mining Patterns: New Methods and Applications, IDEA Group Inc., pp.36, 2007. 〈lirmm-00130718〉

Partager

Métriques

Consultations de la notice

131

Téléchargements de fichiers

120