Visually mining relational data

Guy Melançon 1, 2 Yves Chiricota 3
1 GRAVITE - Graph Visualization and Interactive Exploration
Université Sciences et Technologies - Bordeaux 1, Inria Bordeaux - Sud-Ouest, École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB), CNRS - Centre National de la Recherche Scientifique : UMR
2 TATOO - Fouille de données environnementales
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : Mining relational data often boils down to computing clusters, that is finding sub-communities of data elements forming cohesive sub-units, while being well separated from one another. The clusters themselves are sometimes termed "communities" and the way clusters relate to one another is often referred to as a "community structure". Methods for identifying communities or subgroups in network data is the focus of intense research is different scientific communities and for different purposes. The present paper focuses on two novel algorithms producing multilevel community structures from raw network data. The two algorithms exploit an edge metric extending Watts's clustering coefficient to edges of a graph. The full benefit of the method comes from the multilevel nature of the community structure as it facilitates the visual interaction and navigation of the network by zooming in and out of components at any level. This multilevel navigation proves to be useful when visually exploring a network in search for structural patterns.
Type de document :
Article dans une revue
International Review on Computers and Software (IRECOS), Praise Worthy Prize, 2007, 2 (3), pp.14
Liste complète des métadonnées

Littérature citée [50 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00153838
Contributeur : Guy Melançon <>
Soumis le : mardi 12 juin 2007 - 09:45:05
Dernière modification le : jeudi 11 janvier 2018 - 02:03:58
Document(s) archivé(s) le : jeudi 8 avril 2010 - 19:40:29

Identifiants

  • HAL Id : lirmm-00153838, version 1

Citation

Guy Melançon, Yves Chiricota. Visually mining relational data. International Review on Computers and Software (IRECOS), Praise Worthy Prize, 2007, 2 (3), pp.14. 〈lirmm-00153838〉

Partager

Métriques

Consultations de la notice

220

Téléchargements de fichiers

474