Approximate Sequential Patterns for Incomplete Sequence Database Mining

Céline Fiot 1 Anne Laurent 1 Maguelonne Teisseire 1
1 TATOO - Fouille de données environnementales
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : Databases available from many industrial or research fields are often imperfect. In particular, they are most of the time incomplete in the sense that some of the values are missing. When facing this kind of imperfect data, two techniques can be investigated: either using only the available information or estimating the missing values. In this paper we propose an estimation-based approach for sequence mining. This approach considers partial inclusion of an item within a record using fuzzy sets. Experiments run on various synthetic datasets show the feasibility and validity of our proposal as well in terms of quality as in terms of the robustness to the rate of missing values.
Type de document :
Communication dans un congrès
FUZZ: Fuzzy Systems, 2007, Imperial College, London, United Kingdom. 16th IEEE International Fuzzy Systems Conference, pp.664-669, 2007
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00173127
Contributeur : Celine Fiot <>
Soumis le : mercredi 19 septembre 2007 - 09:20:13
Dernière modification le : jeudi 11 janvier 2018 - 06:26:17

Identifiants

  • HAL Id : lirmm-00173127, version 1

Collections

Citation

Céline Fiot, Anne Laurent, Maguelonne Teisseire. Approximate Sequential Patterns for Incomplete Sequence Database Mining. FUZZ: Fuzzy Systems, 2007, Imperial College, London, United Kingdom. 16th IEEE International Fuzzy Systems Conference, pp.664-669, 2007. 〈lirmm-00173127〉

Partager

Métriques

Consultations de la notice

32