Functional Stepped Surfaces, Flips and Generalized Substitutions - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier Access content directly
Journal Articles Theoretical Computer Science Year : 2007

Functional Stepped Surfaces, Flips and Generalized Substitutions

Pierre Arnoux
  • Function : Author
  • PersonId : 843356
Valerie Berthe
Thomas Fernique
  • Function : Author
  • PersonId : 938430


A substitution is a non-erasing morphism of the free monoid. The notion of multidimensional substitution of non-constant length acting on multidimensional words is proved to be well-defined on the set of two-dimensional words related to discrete approximations of irrational planes. Such a multidimensional substitution can be associated with any usual unimodular substitution. The aim of this paper is to extend the domain of definition of such multidimensional substitutions to functional stepped surfaces. One central tool for this extension is the notion of flips acting on tilings by lozenges of the plane.
Fichier principal
Vignette du fichier
ABFJ2006_00579835.pdf (399.54 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

lirmm-00180395 , version 1 (07-06-2011)



Pierre Arnoux, Valerie Berthe, Thomas Fernique, Damien Jamet. Functional Stepped Surfaces, Flips and Generalized Substitutions. Theoretical Computer Science, 2007, 380 (3), pp.251-265. ⟨10.1016/j.tcs.2007.03.031⟩. ⟨lirmm-00180395⟩
256 View
159 Download



Gmail Mastodon Facebook X LinkedIn More