Skip to Main content Skip to Navigation
Journal articles

Functional Stepped Surfaces, Flips and Generalized Substitutions

Pierre Arnoux 1 Valerie Berthe 2 Thomas Fernique 2 Damien Jamet 3
2 ARITH - Arithmétique informatique
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
3 ADAGIO - Applying Discrete Algorithms to Genomics and Imagery
LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : A substitution is a non-erasing morphism of the free monoid. The notion of multidimensional substitution of non-constant length acting on multidimensional words is proved to be well-defined on the set of two-dimensional words related to discrete approximations of irrational planes. Such a multidimensional substitution can be associated with any usual unimodular substitution. The aim of this paper is to extend the domain of definition of such multidimensional substitutions to functional stepped surfaces. One central tool for this extension is the notion of flips acting on tilings by lozenges of the plane.
Complete list of metadatas

Cited literature [21 references]  Display  Hide  Download

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00180395
Contributor : Valerie Berthe <>
Submitted on : Tuesday, June 7, 2011 - 10:33:33 AM
Last modification on : Friday, April 12, 2019 - 10:18:03 AM
Document(s) archivé(s) le : Friday, September 9, 2011 - 3:10:07 PM

File

ABFJ2006_00579835.pdf
Files produced by the author(s)

Identifiers

Citation

Pierre Arnoux, Valerie Berthe, Thomas Fernique, Damien Jamet. Functional Stepped Surfaces, Flips and Generalized Substitutions. Theoretical Computer Science, Elsevier, 2007, 380 (3), pp.251-265. ⟨10.1016/j.tcs.2007.03.031⟩. ⟨lirmm-00180395⟩

Share

Metrics

Record views

501

Files downloads

273