PP Attachment Ambiguity Resolution with Corpus-Based Pattern Distributions and Lexical Signatures

Nuria Gala 1 Mathieu Lafourcade 2
2 TEXTE - Exploration et exploitation de données textuelles
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : In this paper, we propose a method combining unsupervised learning of lexical frequencies with semantic information aiming at improving PP attachment ambiguity resolution. Using the output of a robust parser, i.e. the set of all possible attachments for a given sentence, we query the Web and obtain statistical information about the frequencies of the attachments distributions as well as lexical signatures of the terms on the patterns. All this information is used to weight the dependencies yielded by the parser.
Document type :
Journal articles
Complete list of metadatas

Cited literature [8 references]  Display  Hide  Download

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00200910
Contributor : Mathieu Lafourcade <>
Submitted on : Friday, December 21, 2007 - 8:11:45 PM
Last modification on : Friday, February 15, 2019 - 3:22:03 PM
Long-term archiving on: Thursday, September 27, 2012 - 1:20:30 PM

Identifiers

  • HAL Id : lirmm-00200910, version 1

Collections

Citation

Nuria Gala, Mathieu Lafourcade. PP Attachment Ambiguity Resolution with Corpus-Based Pattern Distributions and Lexical Signatures. ECTI-CIT Transactions on Computer and Information Technology, ECTI, 2006, 2 (2), pp.116-120. ⟨lirmm-00200910⟩

Share

Metrics

Record views

573

Files downloads

298