Mining Networks through Visual Analytics: Incremental Hypothesis Building and Validation - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Chapitre D'ouvrage Année : 2008

Mining Networks through Visual Analytics: Incremental Hypothesis Building and Validation

Résumé

Interactive visualization supports the analytical process: interacting with abstract views, using the data as a malleable material, analysts build hypothesis that can be further validated on the whole dataset. We use graph clustering in order to group elements and show them as meta-nodes and reduce the number of visual items, further organizing data over into several layers, in an effort to provide a multilevel model of the studied phenomenon. In doing so, hierarchical clustering not only contributes to the study of data but also brings in ingredients for interaction, enabling the user to zoom in and out of clusters while exploring the data in quest for evidence.
Fichier non déposé

Dates et versions

lirmm-00272781 , version 1 (11-04-2008)

Identifiants

  • HAL Id : lirmm-00272781 , version 1

Citer

David Auber, Guy Melançon, Romain Bourqui. Mining Networks through Visual Analytics: Incremental Hypothesis Building and Validation. Clive Best, Françoise Fogelman Soulié. Mining Massive Data Sets for Security, IOS Press, pp.204-211, 2008, NATO Advanced Study Institute, 978-1-58603-898-4. ⟨lirmm-00272781⟩
230 Consultations
0 Téléchargements

Partager

More