Fast Extraction of Gradual Association Rules: A Heuristic Based Method

Lisa Di Jorio 1 Anne Laurent 1 Maguelonne Teisseire 1
1 TATOO - Fouille de données environnementales
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : Even if they have proven to be relevant on traditional transactional databases, data mining tools are still inefficient on some kinds of databases. In particular, databases containing discrete values or having a value for each item, like gene expression data, are especially challenging. On such data, existing approaches either transform the data to classical binary attributes, or use discretisation, including fuzzy partition to deal with the data. However, binary mapping of such databases drives to a loss of information and extracted knowledge is not exploitable for end-users. Thus, powerful tools designed for this kind of data are needed. On the other hand, existing fuzzy approaches hardly take gradual notions into account, or are not scalable enougth to tackle the problem. In this paper, we thus propose a heuristic in order to extract tendencies, in the form of gradual association rules. A gradual rule can be read as ``\textit{The more X and the less Y, then the more V and the less W}''. Instead of using fuzzy sets, we apply our method directly on valued data and we propose an efficient heuristic, thus reducing combinatorial complexity and scalability. Experiments on synthetic datasets show the interest of our method.
Type de document :
Communication dans un congrès
CSTST'08: International Conference on Soft Computing as Transdisciplinary Science and Technology, Oct 2008, Cergy-Pontoise, Paris, France, ACM Digital Libraries, pp.000-010, 2008, 〈http://sigappfr.acm.org/cstst08/〉
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00324473
Contributeur : Lisa Di Jorio <>
Soumis le : jeudi 25 septembre 2008 - 10:23:16
Dernière modification le : vendredi 19 octobre 2018 - 01:14:12

Identifiants

  • HAL Id : lirmm-00324473, version 1

Collections

Citation

Lisa Di Jorio, Anne Laurent, Maguelonne Teisseire. Fast Extraction of Gradual Association Rules: A Heuristic Based Method. CSTST'08: International Conference on Soft Computing as Transdisciplinary Science and Technology, Oct 2008, Cergy-Pontoise, Paris, France, ACM Digital Libraries, pp.000-010, 2008, 〈http://sigappfr.acm.org/cstst08/〉. 〈lirmm-00324473〉

Partager

Métriques

Consultations de la notice

91