Extraction of Opposite Sentiments in Classified Free Format Text Reviews

Abstract : Most of the previous approaches in opinion mining focus on the classifications of opinion polarities, positive or negative, expressed in customer reviews. In this paper, we present the problem of extracting contextual opposite sentiments in classified free format text reviews. We adapt the sequence data model to text mining with Part-of-Speech tags, and then we propose a belief-driven approach for extracting contextual opposite sentiments as unexpected sequences with respect to the opinion polarity of reviews. We conclude by detailing our experimental results on free format text movie review data.
Type de document :
Communication dans un congrès
DEXA'2008: 19th International Conference on Database and Expert Systems Applications, Turin, Italy. Springer, pp.710-717, 2008, LNCS. 〈10.1007/978-3-540-85654-2_62〉
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00324582
Contributeur : Haoyuan Li <>
Soumis le : jeudi 2 avril 2009 - 14:42:17
Dernière modification le : jeudi 24 mai 2018 - 15:59:23
Document(s) archivé(s) le : vendredi 4 juin 2010 - 11:47:32

Fichier

OppositeSentiments.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Haoyuan Li, Anne Laurent, Mathieu Roche, Pascal Poncelet. Extraction of Opposite Sentiments in Classified Free Format Text Reviews. DEXA'2008: 19th International Conference on Database and Expert Systems Applications, Turin, Italy. Springer, pp.710-717, 2008, LNCS. 〈10.1007/978-3-540-85654-2_62〉. 〈lirmm-00324582〉

Partager

Métriques

Consultations de la notice

183

Téléchargements de fichiers

156