Embedded System used for Classifying Motor Activities of Elderly and Disabled People

Abstract : Our modern societies are confronted to a new growing problem: the global ageing of population. In order to find ways to encourage elderly people to live longer in their own home, ensuring the necessary vigilance and security at the lowest cost, some tele-assistance systems are already available commercially. This article presents a specific neural network used on a portable system for classifying activities in ambulatory monitoring. After more precisions about this specific neural network, we present in the second part some experimental results from our prototype stemming from gerontologic institute Ingema.
Type de document :
Article dans une revue
Computers and Industrial Engineering, Elsevier, 2009, 57 (1), pp.419-432. 〈10.1016/j.cie.2009.01.011〉
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00370444
Contributeur : David Guiraud <>
Soumis le : mardi 24 mars 2009 - 13:57:47
Dernière modification le : jeudi 24 mai 2018 - 15:59:23

Identifiants

Citation

Nicolas Fourty, David Guiraud, Philippe Fraisse, Guillaume Perolle, Igone Etxeberria, et al.. Embedded System used for Classifying Motor Activities of Elderly and Disabled People. Computers and Industrial Engineering, Elsevier, 2009, 57 (1), pp.419-432. 〈10.1016/j.cie.2009.01.011〉. 〈lirmm-00370444〉

Partager

Métriques

Consultations de la notice

303