Extraction of Unexpected Sentences: A Sentiment Classification Assessed Approach - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Article Dans Une Revue Intelligent Data Analysis Année : 2010

Extraction of Unexpected Sentences: A Sentiment Classification Assessed Approach

Résumé

Sentiment classification in text documents is an active data mining research topic in opinion retrieval and analysis. Different from previous studies concentrating on the development of effective classifiers, in this paper, we focus on the extraction and validation of unexpected sentences issued in sentiment classification. In this paper, we propose a general framework for determining unexpected sentences. The relevance of the extracted unexpected sentences is assessed in the context of text classification. In the experiments, we present the extraction of unexpected sentences for sentiment classification within the proposed framework, and then evaluate the influence of unexpected sentences on the quality of classification tasks. The experimental results show the effectiveness and usefulness of our proposed approach.
Fichier principal
Vignette du fichier
IDA2010.pdf (414.65 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

lirmm-00401363 , version 1 (02-04-2019)

Identifiants

Citer

Haoyuan Li, Anne Laurent, Pascal Poncelet, Mathieu Roche. Extraction of Unexpected Sentences: A Sentiment Classification Assessed Approach. Intelligent Data Analysis, 2010, 14 (1), pp.31-46. ⟨10.3233/IDA-2010-0407⟩. ⟨lirmm-00401363⟩
138 Consultations
165 Téléchargements

Altmetric

Partager

More