Mining for Relevant Terms From Log Files

Hassan Saneifar 1, 2 Stéphane Bonniol 2 Anne Laurent 3 Pascal Poncelet 3 Mathieu Roche 4
3 TATOO - Fouille de données environnementales
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
4 TEXTE - Exploration et exploitation de données textuelles
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : The Information extracted from log files of computing systems can be considered one of the important resources of information systems. In the case of Integrated Circuit design, log files generated by design tools are not exhaustively exploited. The logs of this domain are multi-source, multi-format, and have a heterogeneous and evolving structure. Moreover, they usually do not respect the grammar and the structures of natural language though they are written in English. According to features of such textual data, applying the classical methods of information extraction is not an easy task, more particularly for terminology extraction. We have previously introduced EXTERLOG approach to extract the terminology from such log files. In this paper, we introduce a new developed version of EXTERLOG guided by Web. We score the extracted terms by a Web and context based measure. We favor the more relevant terms of domain and emphasize the precision by filtering terms based on their scores. The experiments show that EXTERLOG is well-adapted terminology extraction approach from log files.
Type de document :
Communication dans un congrès
KDIR'09: International Conference on Knowledge Discovery and Information Retrieval, Oct 2009, Madeira, Portugal. pp.77-84, 2009, 〈http://www.kdir.ic3k.org/〉
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00423947
Contributeur : Hassan Saneifar <>
Soumis le : mardi 13 octobre 2009 - 13:12:11
Dernière modification le : vendredi 19 octobre 2018 - 01:14:13
Document(s) archivé(s) le : mardi 16 octobre 2012 - 12:10:46

Fichier

KDIR09-saneifar.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : lirmm-00423947, version 1

Collections

Citation

Hassan Saneifar, Stéphane Bonniol, Anne Laurent, Pascal Poncelet, Mathieu Roche. Mining for Relevant Terms From Log Files. KDIR'09: International Conference on Knowledge Discovery and Information Retrieval, Oct 2009, Madeira, Portugal. pp.77-84, 2009, 〈http://www.kdir.ic3k.org/〉. 〈lirmm-00423947〉

Partager

Métriques

Consultations de la notice

366

Téléchargements de fichiers

488