Complexity of $(p,1)$-Total Labelling - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Article Dans Une Revue Discrete Applied Mathematics Année : 2009

Complexity of $(p,1)$-Total Labelling

Résumé

A {\it $(p,1)$-total labelling} of a graph $G=(V,E)$ is a total coloring $L$ from $V\cup E$ into $\{0,\dots ,l\}$ such that $|L(v)-L(e)|\geq p$ whenever an edge $e$ is incident to a vertex $v$. The minimum $l$ for which $G$ admits a $(p,1)$-total labelling is denoted by $\lambda_p(G)$. The case $p=1$ corresponds to the usual notion of total colouring, which is NP-hard to calculate even for cubic bipartite graphs~\cite{MDSA94}. We assume $p\geq 2$ in this paper. It is easy to show that $\lambda_p(G)\geq \Delta +p-1$, where $\Delta$ is the maximum degree of $G$. Moreover, when $G$ is bipartite, $\Delta +p$ is an upper bound for $\lambda_p(G)$, leaving only two possible values. In this paper, we completely settle the computational complexity of deciding whether $\lambda_p(G)$ is equal to $\Delta +p-1$ or to $\Delta +p$ when $G$ is bipartite. This is trivial when $\Delta \leq p$, polynomial when $\Delta =3$ and $p=2$, and NP-complete in the remaining cases.
Fichier principal
Vignette du fichier
complexityp1.pdf (230.35 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

lirmm-00432700 , version 1 (31-08-2010)

Identifiants

Citer

Frédéric Havet, Stéphan Thomassé. Complexity of $(p,1)$-Total Labelling. Discrete Applied Mathematics, 2009, 157, pp.2859-2870. ⟨10.1016/j.dam.2009.03.021⟩. ⟨lirmm-00432700⟩
252 Consultations
155 Téléchargements

Altmetric

Partager

More