Robustness of Phylogenetic Inference Based on Minimum Evolution - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier Access content directly
Journal Articles Bulletin of Mathematical Biology Year : 2010

Robustness of Phylogenetic Inference Based on Minimum Evolution

Abstract

Minimum evolution is the guiding principle of an important class of distance-based phylogeny reconstruction methods, including neighbor-joining (NJ), which is the most cited tree inference algorithm to date. The minimum evolution principle involves searching for the tree with minimum length, where the length is estimated using various least-squares criteria. Since evolutionary distances cannot be known precisely but only estimated, it is important to investigate the robustness of phylogenetic reconstruction to imprecise estimates for these distances. The safety radius is a measure of this robustness: it consists of the maximum relative deviation that the input distances can have from the correct distances, without compromising the reconstruction of the correct tree structure. Answering some open questions, we here derive the safety radius of two popular minimum evolution criteria: balanced minimum evolution (BME) and minimum evolution based on ordinary least squares (OLS + ME). Whereas BME has a radius of 1/2, which is the best achievable, OLS+ME has a radius tending to 0 as the number of taxa increases. This difference may explain the gap in reconstruction accuracy observed in practice between OLS + ME and BME (which forms the basis of popular programs such as NJ and FastME).
Fichier principal
Vignette du fichier
PardiGuillemotGascuel2010_manuscript.pdf (258.49 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

lirmm-00511779 , version 1 (26-08-2010)
lirmm-00511779 , version 2 (05-09-2012)

Identifiers

Cite

Fabio Pardi, Sylvain Guillemot, Olivier Gascuel. Robustness of Phylogenetic Inference Based on Minimum Evolution. Bulletin of Mathematical Biology, 2010, 72 (7), pp.1820-1839. ⟨10.1007/s11538-010-9510-y⟩. ⟨lirmm-00511779v1⟩
173 View
386 Download

Altmetric

Share

Gmail Facebook X LinkedIn More