Muscle Fatigue Tracking Based on Stimulus Evoked EMG and Adaptive Torque Prediction

Qin Zhang 1, 2, * Mitsuhiro Hayashibe 1 David Guiraud 1
* Auteur correspondant
1 DEMAR - Artificial movement and gait restoration
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : Functional electrical stimulation (FES) is effective to restore movement in spinal cord injured (SCI) subjects. Unfortunately, muscle fatigue constrains the application of FES so that output torque feedback is interesting for fatigue compensation. Whereas, inadequacy of torque sensors is another challenge for FES control. Torque estimation is thereby essential in fatigue tracking task for practical FES employment. In this work, the Hammstein cascade with electromyography (EMG) as input is applied to model the myoelectrical mechanical behavior of the stimulated muscle. Kalman filter with forgetting factor is presented to estimate the muscle model and track fatigue. Fatigue inducing protocol was conducted on three SCI subjects through surface electrical stimulation. Assessment in simulation and with experimental data reveals that the muscle model properly fits the muscle behavior well. Moreover, the time-varying parameters tracking performance in simulation is efficient such that real time tracking is feasible with Kalman filter. The fatigue tracking with experimental data further demonstrates that the proposed method is suitable for fatigue tracking as well as adaptive torque prediction at different prediction horizons.
Type de document :
Communication dans un congrès
ICRA: International Conference on Robotics and Automation, May 2011, Shanghai, China. pp.1433-1438, 2011, 〈https://ras.papercept.net/conferences/conferences/ICRA11/program/ICRA11_ProgramAtAGlanceWeb.html〉
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00588948
Contributeur : Qin Zhang <>
Soumis le : mercredi 27 avril 2011 - 10:12:47
Dernière modification le : vendredi 12 janvier 2018 - 01:55:00
Document(s) archivé(s) le : jeudi 28 juillet 2011 - 02:38:06

Fichier

ICRA11_Final_Qin_ZHANG.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : lirmm-00588948, version 1

Citation

Qin Zhang, Mitsuhiro Hayashibe, David Guiraud. Muscle Fatigue Tracking Based on Stimulus Evoked EMG and Adaptive Torque Prediction. ICRA: International Conference on Robotics and Automation, May 2011, Shanghai, China. pp.1433-1438, 2011, 〈https://ras.papercept.net/conferences/conferences/ICRA11/program/ICRA11_ProgramAtAGlanceWeb.html〉. 〈lirmm-00588948〉

Partager

Métriques

Consultations de la notice

229

Téléchargements de fichiers

296