Automatic Titling of Articles Using Position and Statistical Information - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Conference Papers Year : 2011

Automatic Titling of Articles Using Position and Statistical Information

Abstract

This paper describes a system facilitating information retrieval in a set of textual documents by tackling the automatic titling and subtitling issue. Automatic titling here consists in extracting relevant noun phrases from texts as candidate titles. An original approach combining statistical criteria and noun phrases positions in the text helps collecting relevant titles and subtitles. So, the user may benefit from an outline of all the subjects evoked in a mass of documents, and easily find the information he/she is looking for. An evaluation on real data shows that the solutions given by this automatic titling approach are relevant.
Fichier principal
Vignette du fichier
ranlp2011_ok.pdf (231.6 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

lirmm-00637975 , version 1 (03-11-2011)

Identifiers

  • HAL Id : lirmm-00637975 , version 1

Cite

Cédric Lopez, Violaine Prince, Mathieu Roche. Automatic Titling of Articles Using Position and Statistical Information. RANLP'11: Recent Advances in Natural Language Processing, Dec 2011, Hissar, Bulgaria. pp.727-732. ⟨lirmm-00637975⟩
140 View
87 Download

Share

More