Database Preference Queries--A Possibilistic Logic Approach with Symbolic Priorities

Allel Hadjali 1 Souhila Kaci 2 Henri Prade 3
1 PILGRIM - Gradedness, Imprecision, and Mediation in Database Management Systems
IRISA-D7 - GESTION DES DONNÉES ET DE LA CONNAISSANCE
2 GRAPHIK - Graphs for Inferences on Knowledge
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : The paper presents a new approach to database preference queries, where preferences are represented in a possibilistic logic manner, using symbolic weights. The symbolic weights may be processed without assessing their precise value, which leaves the freedom for the user to not specify any priority among the preferences. The user may also enforce a (partial) ordering between them, if necessary. The approach can be related to the processing of fuzzy queries whose components are conditionally weighted in terms of importance. In this paper, importance levels are symbolically processed, and refinements of both Pareto ordering and minimum ordering are used. The representational power of the proposed setting is stressed, while the approach is compared with database Best operator-like methods and with the CP-net approach developed in artificial intelligence. The paper also provides a structured and rather broad overview of the different lines of research in the literature dealing with the handling of preferences in database queries.
Type de document :
Article dans une revue
Annals of Mathematics and Artificial Intelligence, Springer Verlag, 2012, 63 (3-4), pp.357-383. <10.1007/s10472-012-9279-9>
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00680458
Contributeur : Souhila Kaci <>
Soumis le : lundi 19 mars 2012 - 15:13:56
Dernière modification le : jeudi 9 février 2017 - 16:03:44

Identifiants

Citation

Allel Hadjali, Souhila Kaci, Henri Prade. Database Preference Queries--A Possibilistic Logic Approach with Symbolic Priorities. Annals of Mathematics and Artificial Intelligence, Springer Verlag, 2012, 63 (3-4), pp.357-383. <10.1007/s10472-012-9279-9>. <lirmm-00680458>

Partager

Métriques

Consultations de la notice

237