A Scalable Indexing Solution to Mine Huge Genomic Sequence Collections

Abstract : With High Throughput Sequencing (HTS) technologies, biology is experiencing a sequence data deluge. A single sequencing experiment currently yields 100 million short sequences, or reads, the analysis of which demands efficient and scalable sequence analysis algorithms. Diverse kinds of applications repeatedly need to query the sequence collection for the occurrence positions of a subword. Time can be saved by building an index of all subwords present in the sequences before performing huge numbers of queries. However, both the scalability and the memory requirement of the chosen data structure must suit the data volume. Here, we introduce a novel indexing data structure, called Gk arrays, and related algorithms that improve on classical indexes and state of the art hash tables.
Liste complète des métadonnées

Contributeur : Eric Rivals <>
Soumis le : mercredi 27 juin 2012 - 16:13:51
Dernière modification le : vendredi 26 octobre 2018 - 10:35:15
Document(s) archivé(s) le : vendredi 28 septembre 2012 - 02:41:41


Fichiers éditeurs autorisés sur une archive ouverte


  • HAL Id : lirmm-00712653, version 1


Eric Rivals, Nicolas Philippe, Mikael Salson, Martine Léonard, Thérèse Commes, et al.. A Scalable Indexing Solution to Mine Huge Genomic Sequence Collections. ERCIM News, ERCIM, 2012, 2012 (89), pp.20-21. 〈http://ercim-news.ercim.eu/en89/special/a-scalable-indexing-solution-to-mine-huge-genomic-sequence-collections〉. 〈lirmm-00712653〉



Consultations de la notice


Téléchargements de fichiers