Healtcare Trajectory Mining by Combining Multi-dimensional Component and Itemsets

Elias Egho 1 Dino Ienco 2 Nicolas Jay 1 Amedeo Napoli 1 Pascal Poncelet 2 Catherine Quantin 3 Chedy Raïssi 1 Maguelonne Teisseire 2
1 ORPAILLEUR - Knowledge representation, reasonning
Inria Nancy - Grand Est, LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
2 TATOO - Fouille de données environnementales
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : Sequential pattern mining is an approach to extract corre- lations among temporal data. Many different methods were proposed to either enumerate sequences of set valued data (i.e., itemsets) or sequences containing multidimensional items. However, in many real-world scenar- ios, data sequences are described as events of both multi-dimensional and set valued informations. These rich heterogeneous descriptions can- not be exploited by traditional approaches. For example, in healthcare domain, hospitalizations are defined as sequences of multi-dimensional attributes (e.g. Hospital or Diagnosis) associated with sets of medical procedures (e.g. { Radiography, Appendectomy }). In this paper we pro- pose a new approach called MMISP (Mining Multi-dimensional-Itemset Sequential Patterns) to extract patterns from sequences including both multi-dimensional and set valued data. The novelties of the proposal lies in: (i) the way in which the data can be efficiently compressed; (ii) the ability to reuse a state-of-the-art sequential pattern mining algo- rithm and (iii) the extraction of new kind of patterns. We introduce as a case-study, experiments on real data aggregated from a regional health- care system and we point out the usefulness of the extracted patterns. Additional experiments on synthetic data highlights the efficiency and scalability of our approach.
Type de document :
Communication dans un congrès
NFMCP: New Frontiers in Mining Complex Patterns, Sep 2012, Londres, United Kingdom. Springer, NFMCP'2012: New Frontiers in Mining Complex Patterns, Workshop in conjunction with European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2012), LNCS, 2012, 〈http://www.ecmlpkdd2012.net/〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00732661
Contributeur : Pascal Poncelet <>
Soumis le : dimanche 16 septembre 2012 - 02:45:55
Dernière modification le : jeudi 11 janvier 2018 - 06:26:17
Document(s) archivé(s) le : vendredi 16 décembre 2016 - 13:56:52

Fichier

NFMC2012.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : lirmm-00732661, version 1

Citation

Elias Egho, Dino Ienco, Nicolas Jay, Amedeo Napoli, Pascal Poncelet, et al.. Healtcare Trajectory Mining by Combining Multi-dimensional Component and Itemsets. NFMCP: New Frontiers in Mining Complex Patterns, Sep 2012, Londres, United Kingdom. Springer, NFMCP'2012: New Frontiers in Mining Complex Patterns, Workshop in conjunction with European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2012), LNCS, 2012, 〈http://www.ecmlpkdd2012.net/〉. 〈lirmm-00732661〉

Partager

Métriques

Consultations de la notice

466

Téléchargements de fichiers

308