Simplified Static Analysis of Large-Dimension Parallel Cable-Driven Robots
Abstract
This paper introduces a new simplified static analysis of parallel robots driven by inextensible cables of non-negligible mass. It is based on a known hefty cable static modeling which seems to have been overlooked in previous works on parallel cable-driven robots. This cable modeling is obtained from a well-known sagging cable modeling, known as the catenary, by assuming that cable sag is relatively small. The use of the catenary has been shown to lead to a nonlinear set of equations describing the kinetostatic behavior of parallel robots driven by cables of non-negligible mass. On the contrary, the proposed simplified static analysis yields a linear relationship between (components of) the forces in the cables and the external wrench applied to the robot mobile platform. As a consequence, by means of the simplified static analysis, useful wrench-based analysis and design techniques devised for parallel robots driven by massless cables can now be extended to cases in which cable mass is to be accounted for.