Reduce, You Say: What NoSQL Can Do for Data Aggregation and BI in Large Repositories

Laurent Bonnet 1, 2 Anne Laurent 1 Bénédicte Laurent 2 Michel Sala 1 Nicolas Sicard 3
1 TATOO - Fouille de données environnementales
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
3 Hybrid - 3D interaction with virtual environments using body and mind
Inria Rennes – Bretagne Atlantique , IRISA-D6 - MEDIA ET INTERACTIONS
Abstract : Data aggregation is one of the key features used in databases, especially for Business Intelligence (e.g., ETL, OLAP) and analytics/data mining. When considering SQL databases, aggregation is used to prepare and visualize data for deeper analyses. However, these operations are often impossible on very large volumes of data regarding memory-and-timeconsumption. In this paper, we show how NoSQL databases such as MongoDB and its key-value stores, thanks to the native MapReduce algorithm, can provide an efficient framework to aggregate large volumes of data. We provide basic material about the MapReduce algorithm, the different NoSQL databases (read intensive vs. write intensive). We investigate how to efficiently modelize the data framework for BI and analytics. For this purpose, we focus on read intensive NoSQL databases using MongoDB and we show how NoSQL and MapReduce can help handling large volumes of data.
Type de document :
Communication dans un congrès
DEXA: Database and Expert Systems Applications, 2011, Toulouse, France. pp.483-488, 2011, 〈10.1109/DEXA.2011.71〉
Liste complète des métadonnées

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00803917
Contributeur : Anne Laurent <>
Soumis le : samedi 23 mars 2013 - 21:24:30
Dernière modification le : mardi 16 janvier 2018 - 15:54:22

Identifiants

Citation

Laurent Bonnet, Anne Laurent, Bénédicte Laurent, Michel Sala, Nicolas Sicard. Reduce, You Say: What NoSQL Can Do for Data Aggregation and BI in Large Repositories. DEXA: Database and Expert Systems Applications, 2011, Toulouse, France. pp.483-488, 2011, 〈10.1109/DEXA.2011.71〉. 〈lirmm-00803917〉

Partager

Métriques

Consultations de la notice

433