Self-adaptive Monte Carlo Localization for Mobile Robots Using Range Finders

Abstract : In order to achieve the autonomy of mobile robots, effective localization is a necessary prerequisite. In this paper, we propose an improved Monte Carlo localization algorithm using self-adaptive samples, abbreviated as SAMCL. By employing a pre-caching technique to reduce the on-line computational burden, SAMCL is more efficient than regular MCL. Further, we define the concept of similar energy region (SER), which is a set of poses (grid cells) having similar energy with the robot in the robot space. By distributing global samples in SER instead of distributing randomly in the map, SAMCL obtains a better performance in localization. Position tracking, global localization and the kidnapped robot problem are the three sub-problems of the localization problem. Most localization approaches focus on solving one of these sub-problems. However, SAMCL solves all these three sub-problems together thanks to self-adaptive samples that can automatically separate themselves into a global sample set and a local sample set according to needs. The validity and the efficiency of the SAMCL algorithm are demonstrated by bothsimulations and experiments carried out with different intentions.Extensive experiment results and comparisons are also given int his paper.
Type de document :
Article dans une revue
Robotica, Cambridge University Press, 2012, pp.229-244
Liste complète des métadonnées

Littérature citée [39 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00806955
Contributeur : René Zapata <>
Soumis le : mercredi 3 avril 2013 - 10:22:21
Dernière modification le : jeudi 24 mai 2018 - 15:59:23
Document(s) archivé(s) le : dimanche 2 avril 2017 - 23:28:57

Fichier

ROBOTICA.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : lirmm-00806955, version 1

Citation

René Zapata, Lei Zhang, Pascal Lepinay. Self-adaptive Monte Carlo Localization for Mobile Robots Using Range Finders. Robotica, Cambridge University Press, 2012, pp.229-244. 〈lirmm-00806955〉

Partager

Métriques

Consultations de la notice

270

Téléchargements de fichiers

1805