Entity Resolution for Probabilistic Data - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier Access content directly
Journal Articles Information Sciences Year : 2014

Entity Resolution for Probabilistic Data


Entity resolution is the problem of identifying the tuples that represent the same real world entity. In this paper, we address the problem of entity resolution over probabilistic data (ERPD), which arises in many ap-plications that have to deal with probabilistic data. To deal with the ERPD problem, we distinguish between two classes of similarity functions, i.e. context-free and context-sensitive. We propose a PTIME algorithm for context-free similarity functions, and a Monte Carlo approximation algorithm for context-sensitive similarity functions. We also propose improvements over our proposed algorithms. We validated our algorithms through experiments over both synthetic and real datasets. Our extensive performance evaluation shows the effectiveness of our algorithms.
Fichier principal
Vignette du fichier
2014 - Information_sciences.pdf (194.89 Ko) Télécharger le fichier
tex/stacked-eps-converted-to.pdf (7.08 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Origin Files produced by the author(s)

Dates and versions

lirmm-01076096 , version 1 (12-01-2015)



Ayat Naser, Reza Akbarinia, Hamideh Afsarmanesh, Patrick Valduriez. Entity Resolution for Probabilistic Data. Information Sciences, 2014, 277, pp.492-511. ⟨10.1016/j.ins.2014.02.135⟩. ⟨lirmm-01076096⟩
443 View
471 Download



Gmail Mastodon Facebook X LinkedIn More