NACluster: A Non-Supervised Clustering Algorithm for Matching Multi Catalogues

Vinicius P. Freire 1 José A. F. De Macêdo 1 Fábio Porto 2, * Reza Akbarinia 3
* Auteur correspondant
3 ZENITH - Scientific Data Management
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : Astronomy surveys use powerful instruments to browse the sky and identify objects of interest within the surveyed region. Sky objects are individually characterized with spatial coordinates, identifying their position in the sky, in addition to other descriptive attributes. Composing an integrated view of the sky based on catalogues produced by different surveys faces a hard problem of matching objects that have been captured in various catalogues. Due to variations on capturing instruments calibration, the sky position of a single sky object may vary from a catalog to the other. Moreover, in particular dense regions of the sky this problem is exacerbated by a huge number of candidate matches for each given object. Traditional approaches for dealing with this problem use a threshold distance of to reduce the number of matching candidates. Additionally, they adopt a pairwise approach for matching n catalogues inferring transitivity among matches, which not always hold. In this paper, we present NACluster a non-supervised clustering algorithm for dealing with sky object matching in multiple catalogues. NACluster matching strategy extends the traditional k-means clustering algorithm by relaxing the number k of cluster (i.e. matched sky objects). We experiment NACluster with real and synthetic catalogues and show that the results present better accuracy than state of the art solutions.
Type de document :
Communication dans un congrès
IEEE e-Science Workshop, Oct 2014, Guarujá, SP, Brazil. 2014, 〈http://escience.ime.usp.br/preliminary-program/accepted-papers/accepted-papers-workshops〉
Liste complète des métadonnées

Littérature citée [4 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01076107
Contributeur : Reza Akbarinia <>
Soumis le : mardi 21 octobre 2014 - 10:50:20
Dernière modification le : jeudi 24 mai 2018 - 15:59:21
Document(s) archivé(s) le : jeudi 22 janvier 2015 - 10:17:46

Fichier

2014-IEEE e-science.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : lirmm-01076107, version 1

Collections

Citation

Vinicius P. Freire, José A. F. De Macêdo, Fábio Porto, Reza Akbarinia. NACluster: A Non-Supervised Clustering Algorithm for Matching Multi Catalogues. IEEE e-Science Workshop, Oct 2014, Guarujá, SP, Brazil. 2014, 〈http://escience.ime.usp.br/preliminary-program/accepted-papers/accepted-papers-workshops〉. 〈lirmm-01076107〉

Partager

Métriques

Consultations de la notice

260

Téléchargements de fichiers

384