A quantitative preference-based structured argumentation system for decision support

Nouredine Tamani 1 Madalina Croitoru 1
1 GRAPHIK - Graphs for Inferences on Knowledge
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : We introduce in this paper a quantitative preference based argumentation system relying on ASPIC argumentation framework [1] and fuzzy set theory. The knowledge base is fuzzified to allow agents expressing their expertise (premises and rules) attached with grades of importance in the unit interval. Arguments are then attached with a strength score aggregating the importance expressed on their premises and rules. Extensions, corresponding to subsets of consistent arguments, are also attached with forces computed based on their strong arguments. The forces are used then to rank extensions from the strongest to the weakest one, upon which decisions can be made. We have also shown that the strength preference relation defined over arguments is reasonable [2] and our fuzzy ASPIC argumentation system can be seen as a computationally efficient instantiation of the generic model of structured argumentation framework introduced in [2].
Type de document :
Communication dans un congrès
FUZZ: Fuzzy Systems, Jul 2014, Beijing, China. IEEE, 23rd IEEE International Conference on Fuzzy Systems, pp.1408-1415, 2014, 〈http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6891601〉. 〈10.1109/FUZZ-IEEE.2014.6891601〉
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01089588
Contributeur : Nouredine Tamani <>
Soumis le : mardi 2 décembre 2014 - 08:54:52
Dernière modification le : samedi 27 janvier 2018 - 01:30:45
Document(s) archivé(s) le : mardi 3 mars 2015 - 10:25:36

Fichier

7.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Nouredine Tamani, Madalina Croitoru. A quantitative preference-based structured argumentation system for decision support. FUZZ: Fuzzy Systems, Jul 2014, Beijing, China. IEEE, 23rd IEEE International Conference on Fuzzy Systems, pp.1408-1415, 2014, 〈http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6891601〉. 〈10.1109/FUZZ-IEEE.2014.6891601〉. 〈lirmm-01089588〉

Partager

Métriques

Consultations de la notice

261

Téléchargements de fichiers

237